SYNTHESIS OF ALKYL 4,6-DI-O-ACETYL-2,3-DIDEOXY-α-D-threo-HEX-2-ENOPYRANOSIDES FROM 3,4,6-TRI-O-ACETYL-1,5-ANHYDRO-2-DEOXY-D-lyxo-HEX-1-ENITOL (3,4,6-TRI-O-ACETYL-D-GALACTAL)

GRZEGORZ GRYNKIEWICZ, WALDEMAR PRIEBE, AND ALEKSANDER ZAMOJSKI

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland)

(Received November 21st, 1977; accepted for publication, December 29th, 1977)

ABSTRACT

3,4,6-Tri-O-acetyl-D-galactal, on treatment in 1,2-dichloroethane with alcohols and stannic chloride as catalyst, readily undergoes allylic rearrangement—substitution, forming alkyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-threo-hex-2-enopyranosides in yields of 43–92%. Alkyl 3,4,6-tri-O-acetyl-2-deoxy- $\alpha\beta$ -D-lyxo-hexopyranosides are formed as side-products in yields of 2–14%. Stannic chloride-catalysis is also useful in allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol (3,4,6-tri-O-acetyl-D-glucal) which, with methanol or ethanol, affords the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2-enopyranosides in yields of 83 and 94%.

INTRODUCTION

Glycosides of 2,3-dideoxy-2,3-unsaturated aldoses (alkyl 2,3-dideoxyglyc-2-enopyranosides (1) can be obtained from saturated precursors by simultaneous elimination of substituents at C-2 and C-3¹ or, more conveniently, by allylic rearrangement of glycals in the presence of alcohols. This last process, extensively studied by Ferrier and his colleagues², has found wide application for the preparation of alkyl 2,3-dideoxy-D-erythro-hex-2-enopyranosides (3).

Two routes to 3 were devised: (1) treatment of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol (2) with alcohols at elevated temperatures and pressures³, and (2) boron trifluoride-catalysed isomerization of 2 in the presence of

CH₂OR

CH₂OR

CH₂OR

CH₂OR

CH₂OR

CH₂OR

CH₂OR

CR

$$= 0$$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$

alcohols^{4,5}. Route (2) led to higher yields and purer products, but mixtures of both anomers of 3 were formed with the α isomer preponderating.

Application of both methods to 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-lyxo-hex-1-enitol (6) gave less satisfactory results. With methanol at 130°, 6 gave a mixture of methyl 4,6-di-O-acetyl-2,3-dideoxy-D-threo-hex-2-enopyranoside (7, isolated in $\sim 9\%$ yield⁶) and unreacted 6 (35%). Boron trifluoride-catalysed reaction was more convenient from the preparative point of view, but the yield of 7 was not improved significantly⁷.

In order to explain the difference in reactivity of 2 and 6 in the rearrangement, Ferrier^{5,8} assumed that AcO-4 anchimerically assisted the leaving group at C-3; both groups should therefore be *trans* (8).

Anchimeric assistance may not always be indispensable. Thus, Descotes and Martin⁹ showed that 1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-D-arabino-hex-1-enitol (4) isomerised readily in the presence of BF₃ to give benzyl 4,6-di-O-benzyl-2,3-dideoxy- $\alpha\beta$ -D-erythro-hex-2-enopyranoside. In the presence of methanol or ethanol, the corresponding methyl or ethyl glycosides (5) were formed.

We now report that 6 can be easily isomerised in the presence of alcohols to give alkyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-threo-hex-2-enopyranosides in high yield. The reactions are catalysed by stannic chloride.

RESULTS AND DISCUSSION

The reaction of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-lyxo-hex-1-enitol (6) in 1,2-dichloroethane with alcohols, catalysed by stannic chloride, proceeded at room temperature in 1–2 h. Two types of products were usually formed, namely, alkyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-threo-hex-2-enopyranosides (major, 43–92%) and alkyl 3,4,6-tri-O-acetyl-2-deoxy- $\alpha\beta$ -D-lyxo-hexopyranosides (minor, 2–14%). The presence of dimeric compounds¹³ could usually also be detected by t.l.c.

The summary of the reactions performed and the properties of products are

TABLE I

DATA FOR ALKYL 4,6-DI-O-ACETYL-2,3-DIDFOXY-4-D-1/11e0- AND -e1 J/lin o-HFX-2-ENOPYRANDSIDES

¥		Compound	Yreld	M.p or	$[\alpha]_{\rm D}^{20}$ a	a [4] ²⁰ a	Analysis				
			(%)	b.p./Ton (degrees)	(deg	rees)	Formula	Calc.	H	Found	H
-	Me	96	8	59	-174	-184	C ₁₁ H ₁₆ O ₆	54.1	6.6	1	1
Q	Et	10c	92	19.5–20.5	-171	-180	$C_{12}H_{18}O_6$	55.8	7.0	55.6	7.2
ო	PhCH ₂	11	82	140/0.6 180/0.7	-156	-169	$C_{17}\mathrm{H}_{20}\mathrm{O}_{6}$	63.7	6.3	63.7	6,4
4	Ме ₂ СН	12	58	110/0.4	-167	-179.5	$C_{13}H_{20}O_6$	57.3	7.4	57.0	7.6
ស	C ₆ H ₁₁	13	99	170/0.8	1118	-135.5	$C_{10}H_{24}O_0$	61.5	7.8	61.5	7.9
9	Me ₃ C	14	99	160/0.6	-209	-220	$C_{14}H_{22}O_6$	58.7	7.8	58.7	7.8
~	Ph	15	43	160/0.4	99-	-72	$C_{16}H_{18}O_6$	62.7	5.9	62.7	6.1
ω	P-Br-C6H4	91	57	84-85	-33	-35	$C_{16}H_{17}BrO_{6}$	49.9	4.4	49.8	4.5
Ø	Me ₂ C CH ₂ -1	17	95	66-86	-152.5	-161.5	C22H32O11	55.9	89	55.6	7.0
5	O-CMe ₂	$3(R' = Me)^d$	83	110/0.2	+172	+181	$C_{11}H_{16}O_{6}$	54.1	99	54.0	6.8
7		$3(R'=Et)^{\delta}$	94	79	+133	+139	$C_{12}H_{18}O_{\delta}$	55.8	7.0	ì]
19	19 CH CH (10) 0 H R 60 5 61	61 50 [w] 17A	· (CHCl	007 07 11 11 91	, 0000		Colline and the strong of the strong to the strong strong of the strong		9,10		

aIn CH₂Cl₂(e 1). ^bM.p. 60.5-61.5', [a]_D -174° (CHCl₃)³, m.p. 59-60°, [a]_D -172° (CHCl₃)⁷, ^aB.p. 94-96°/10-4, [a]_D -86° (CHCl₃)⁹, ^aB.p. 122-124°/0.2, [a]_D $+107^{\circ}$ (C₆H₆)³.

DATA FOR ALKYL 3,4,6-TRI-O-ACETYL-2-DEOXY-D-IVXO-HEXOPYRANOSIDES

	ıď	Н	6.7		7.1					
	Found	O	51.0	51.2	52.9	52.8	60.3	54.0	58.0	į
		H	9.9		7.0		6.4	7.3	2.6	7.6
	Calc.	0	51.3		52.8		0.09	54.2	58.1	55.5
Analysis	Formula		C13H20O8		$C_{14}H_{22}O_{8}$		C19H2408	$C_{16}H_{24}O_{8}$	$C_{18}H_{28}O_{8}$	$C_{10}II_{20}O_{8}$
$[\alpha]_{578}^{20} a$	(degrees)		+138	6	142.5	8-	+126	+116	+70	+33
$[\alpha]_{D}^{20}a$	(de		+132	6-1	+137	-7.5	+121	+111	+67	+32
M.p. or	b.p./Torr	(aegrees)	130/0.6	80	5859	45-47	185/0.8	140/0.6	135/0.4	140/0.2
ound Yield	(%)		5	∞		-	9	14	12	6
Compe			186	19	50	77	77	23	73	52
Anomer			ಶ	в	ಜ	б	. ช		-	ಶ
R			1 Me	2 Me	3 <u>E</u> t			6 MeaCH	7 CoHii	8 Me ₃ C

^aIn CH₂Cl₂ (c 1). ^bB.p. 125-131 °/0.03 Torr, [α]²⁰ + 159 ° (c 1, CaH₀)¹⁵; syrup, [α]²¹ + 143 ° (c 1, CHCl₃)¹⁶.

collected in Tables I (entries 1-9) and II. Some of the products obtained were described earlier; the structure of others could be easily deduced from the ¹H-n.m.r. spectra (see Experimental).

Unsaturated alkyl glycosides from primary alcohols (Table I, entries 1-3) were formed in very high yields. For comparison purposes, allylic rearrangement of 6 with ethanol was performed in the presence of boron trifluoride. Ethyl glycoside 10 was obtained (\sim 35%), and 20 (9.4%) and 21 (7.5%) were also isolated.

From phenols, and secondary and tertiary alcohols, the yields of unsaturated glycosides were in the range 40-60% (Table I, entries 4-8). Stannic chloride was also suitable as catalyst for the formation of an unsaturated disaccharide (Table I, entry 9).

The presence of any β anomers of 2,3-unsaturated alkyl hexosides was not detected. There are suggestions in the literature¹⁰⁻¹² that, under equilibration conditions, α anomers of alkyl hex-2-enopyranosides are more strongly favoured than β . In the *threo* series, the $\alpha\beta$ equilibrium is almost totally shifted towards the α form, provided that anomerisation is faster than allylic rearrangement.

Stannic chloride can be applied for the preparation of 2,3-unsaturated alkyl hexosides of the *erythro* series. Allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol (2) in the presence of methanol or ethanol readily afforded the corresponding glycosides 3 ($R^1 = Me$ or Et) in yields of 83 and 94%, respectively (Table I, entries 10 and 11). It is emphasised that catalysis by $SnCl_4$ is particularly suitable for the preparation of the latter of these glycosides, which is widely used in carbohydrate synthesis^{1, 13}; 3 ($R^1 = Et$) is obtained by our procedure in a state of high purity. Simple crystallisation is sufficient for the isolation of the product.

Thus, it is evident that Ferrier's hypothesis^{4, 7} invoking anchimeric assistance in the allylic rearrangement of glycals does not apply for reactions catalysed by Lewis acids. The first step in these reactions involves¹⁴ the formation of a complex between AcO-3 and a molecule of the catalyst; elimination of a complex anion gives

allylic carbonium ion 26 which reacts further with an alcohol molecule. Presumably, stannic chloride forms a better leaving group than does boron trifluoride.

The synthetic utility of 2,3-unsaturated alkyl hexosides of the *threo* series has been much less studied than for the *erythro* series. The ready access to the *threo* compounds will allow exploration of their usefulness in synthesis in carbohydrate chemistry.

EXPERIMENTAL

General methods. — Melting points were determined with a Kofler micro-stage apparatus. Boiling points refer to air-bath temperatures. T.l.c. was performed on silica gel (Merck) with light petroleum-ethyl acetate (2:1). Column chromatography was performed on Macherey-Nagel (100-200 mesh) or Merck (230-400 mesh) silica gels. ¹H-N.m.r. spectra (100 MHz) were recorded with a Jeol JNM-4H-100 spectrometer for solutions in CDCl₃ and C₆D₆ with internal Me₄Si. I.r. spectra were recorded with a Beckman IR 4240 spectrophotometer.

Compounds 9-25 exhibited i.r. spectra compatible with their structures, *i.e.*, the spectra contained bands at 1735-1750 and 1230-1240 cm⁻¹ (AcO), and 3-4 bands between 1000 and 1120 cm⁻¹ (acetal); compounds 9-17 showed weak bands at $1655-1660 \text{ cm}^{-1}$ (C=C).

Optical rotations were determined with a Perkin-Elmer 141 automatic polarimeter for 1% solutions in dichloromethane at 20°. A solution of stannic chloride (~75 mg) in 1,2-dichloroethane (1 ml) was used as catalyst.

Ethyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-threo-hex-2-enopyranoside (10). — A solution of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-lyxo-hex-1-enitol (6; 272 mg, 1.0 mmol) and ethanol (92 mg, 2 mmol) in dry 1,2-dichloroethane (10 ml) was treated with catalyst solution (1 ml). After 1 h at room temperature, the mixture became yellowish-brown; t.l.c. showed the disappearance of 6 and the formation of a single product. The mixture was quenched with triethylamine or aqueous sodium hydrogen carbonate, diluted with chloroform (50 ml), washed twice with water, dried (MgSO₄), and concentrated. The oily residue was eluted from silica gel (10 g), to give 10 (237 mg, 92%), b.p. 140°/0.6 Torr, m.p. 19.5-20.5°. For other data, see Table I.

The presence of 20 and 21 was detected by g.l.c. (3% of JXR on Gas Chrom Q, 100-120 mesh, 200°).

¹H-n m.r. data ior alkyl, 4,6-di-O-acetyl-2,3-dideoxy- α -di-Ilieo-hex-2-enopyranosides (9-17) $^{\alpha}$ TABLE III

Compound Solvent	Solvent	H-1	Н-2	Н-3	11-4	Н-5	H-6,6′	ОАС	J _{1,2}	J _{2,3}	J _{2,4}	J _{3,4}	J4,6
6	С _в D _в	4.75	5 80	5.99	4.95	4.2	4.26 ^b	1.75	2.3	10.0		5.3	1.3
10	C_0D_0	4.85	5.77	5.98	4.95	4.3	4.306	1.70	2.7	10.0	6.0	5.4	
11	CDCI ₃ C ₆ D ₆	5.13 4.99	5.89–6.20 5.75	0 6.01	5.01 4.96	4.40	4.35 ^b	2 05	2.1	10.2		4.5 5.2	2.4
13	CDCl ₃ CDCl ₃	5.19 5.47	5.99 5.95	6.11	5.00	4.41 4.46	4.20 4.22	2.07 2.06 2.06	2.0	10.0	0.9	4.2 5.2	2.5
15	C_6D_6	5.48	5.76	6.03	4.94	4.10-4.46	4.46	1 60	2.7	10.1		5.3	2.0
16	CDCI,	5 70	6.16	6.28	5.10	4.45	4.23	1.90	2.5	10.0	0.5	4.5	2.4
17	CDCl3	5.11	6.01	6.12	5.00	4.2	4.286	2.20	2.0	10.0		4.5	2.5

^aFirst order. Signals of aglycon protons are omitted. Other coupling constants (e.g., J_{1,3} and J_{6,6}) were not determined. ^bCenter of a multiplet.

TABLE IV

¹H-n.m R. data for alkyl 3,4,6-tri-O-acetyl-2-deoxy- α - and - β -d-lyxo-hexopyranosides (18–24)

18 (CDCl ₃) 19	5.34 (m, 2H, H-3,4), 4.90 (m, 1 H, H-1), 4.28 (m, 1 H, H-5), 4.13 (m, 2 H, H-6,6'), 3.38 (s, 3 H, OMe), 1.98, 2.06, and 2 14 (3s, 9 H, 3 OAc), and 2.10 (m, 2 H, H-2,2'). 5.31 (bd, 1 H, H-4), 4.89 (o, 1 H, J _{2e,3} 5.5, J _{2a,3} 12, J _{3,4} 3.3 Hz, H-3), 3.96-4 25 (m, 3 H,
(C_6D_6)	H-1,6,6), 3.45 (m, 1 H, H-5), 3 29 (s, 3H, OMe), 1.75 (s, 9 H, 3 OAc), and 1.70-2.15 (m, 2 H, H-2,2).
20	5 35-5 56 (m, 2 H, H-3,4), 4.77 (m, 1 H, H-1), 3.95-4 22 (m, 3 H, H-5,6,6'), 3.20 and
(C_6D_6)	3.56 (4 q, 2 H, AB system of CH ₂ CH ₃), 1 70-2.08 (m, 2 H, H-2,2'), 1.70, 1.74, and 1.78
	(3s, 9 H, 3 OAc), and 1.06 (t, 3 H, Me).
21	5.34 (bd, 1 H, H-4), 4 95 (o, 1 H, J _{2e,3} 5 7, J _{2a,3} 11.7, J _{3,4} 3.0 Hz, H-3), 4.13-4.34 (m,
(C_6D_6)	3 H, H-1,6,6'), 3.52 (m, 1 H, H-5), 3 35 and 3 85 (4 q, 2 H, AB system of CH_2CH_3), 1.80-2 24 (m, 2 H, H-2,2'), 1 80 (s, 9 H, 3 OAc), and 1.14 (t, 3 H, Me).
22	5.19-5 40 (m, 2 H, H-3,4), 5 06 (m, 1 H, H-1), 4.46 and 4 66 (2 d, 2 H, AB system of
(CDCl ₃)	CH ₂ Ph), 401–425 (m, 3 H, H-5,6,6'), 194, 203, and 2.10 (3 s, 9 H, 3 OAc), and 1.81–230 (m, 2 H, H-2,2').
23	5 34-5 55 (m, 2 H, H-3,4), 4 91 (m, 1 H, H-1), 4 14-4 31 (m, 3 H, H-5,6,6'), 3.70 (quin,
(C_6D_6)	1 H, CHMe ₂), 1 64–2 21 (m, 2 H, H-2,2'), 1 69, 1.74, and 1.77 (3 s, 9 H, 3 OAc), 1 09 and 0.97 (2 d, 6 H, CHMe ₂).
24 ^a (CDCl ₃)	4 95-5 41 (m, 3 H, H-1,3,4), 4 02-4.41 (m, 3 H, H-5,6,6'), 3.58 (m, 1 H, CH-O of aglycon), 1.98, 2.05, and 2.14 (3 s, 9 H, 3 OAc), and 1.11-2 19 [m, 12 H, H-2,2', (CH ₂) ₅ of aglycon].

[&]quot;Sample contained some β anomer.

Reactions of 6 with other alcohols in the presence of SnCl₄ followed the above description. Chromatography of the products afforded the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-threo-hex-2-enopyranoside and alkyl 3,4,6-tri-O-acetyl-2-deoxy-D-lyxo-hexopyranoside. The results are collected in Tables I and II. ¹H-N.m.r. data for 9-24 are given in Tables III and IV.

The reaction of 6 with *tert*-butyl alcohol gave the 2,3-unsaturated compound 14, together with a product that was assigned the structure *tert*-butyl 3,4,6-tri-O-acetyl-2-deoxy- α -D-lyxo-hexopyranoside (25); v_{max} 1743, 1370, 1230, 1184, 1042, 1020, 925, 900, 867, 840, and 750 cm⁻¹.

The reaction of 6 (2.72 g) with ethanol (0.92 g) in 1,2-dichloromethane (100 ml) in the presence of boron trifluoride etherate (0.5 ml) was performed according to the method described above. Chromatography of the product mixture gave 10 (0.9 g, 35%), 20 (0.3 g, 9.4%), 21 (0.24 g, 7.5%), and ethyl 4,6-di-O-acetyl-2-deoxy-3-O-ethyl-D-hexopyranoside (80 mg), b.p. 150°/0.6 Torr, $[\alpha]_D$ +4.5°, $[\alpha]_{578}$ +5°. ¹H-N.m.r. data: δ 4.74–4.90 (m, 2 H, H-1,4), 4.24 (m, 3 H, H-5,6,6'), 4.00 (m, 1 H, H-5?), 3.64 (m, 4 H, 2 CH₂CH₃), 2.10 (s, 6 H, 2 OAc), 1.80–2.28 (m, 2 H, H-2,2'), and 1.40 (2 t, 6 H, 2 CH₂CH₃).

Anal. Calc. for C₁₄H₂₄O₇: C, 55.2; H, 8.0. Found: C, 55.4; H, 7.8.

Ethyl 4,6-di-O-acetyl-2,3-dideoxy- α -D-erythro-hex-2-enopyranoside (3, R¹ = Et). — From 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol (2, 272 mg), ethanol (92 mg), 1,2-dichloroethane (10 ml), and stannic chloride (50 mg),

following the method described for 10, crystalline 3 ($R^1 = Et$) was obtained (242.5 mg, 94%) without chromatographic purification.

REFERENCES

- 1 R. J. FERRIER, Adv. Carbohydr. Chem, 20 (1965) 67-137; 24 (1969) 199-266.
- 2 R. J. Ferrier, W. G. Overend, and E. A. Ryan, J. Chem. Soc., (1962) 3667-3670, and subsequent papers in the same series.
- 3 R. J. FERRIER, J. Chem. Soc., (1964) 5443-5449.
- 4 R. J. FERRIER AND N. PRASAD, J. Chem. Soc., C, (1969) 570-575.
- 5 R. J. FERRIER AND N. PRASAD, J. Chem. Soc., C, (1969) 581-586.
- 6 D. M. CIMENT AND R J. FERRIER, J. Chem. Soc, C, (1966) 441-445.
- 7 R. J. FERRIER AND N. PRASAD, J. Chem. Soc., C, (1969) 575-580.
- 8 R. J. Ferrier, N. Prasad, and G. H. Sankey, J. Chem Soc., C, (1968) 974-977.
- 9 G. DESCOTES AND J.-C. MARTIN, Carbohydr. Res., 56 (1977) 168-172.
- 10 R. J. FERRIER AND G. H. SANKEY, J. Chem. Soc., C, (1966) 2339-2345, 2345-2349.
- 11 R. U. LEMIEUX AND R. J. BOSE, Can. J. Chem., 44 (1966) 1855-1862.
- 12 A. Zamojski, A. Konowal, and J. Jurczak, Rocz. Chem, 44 (1970) 1981-1986.
- 13 B. Fraser-Reid, Acc. Chem. Res., 8 (1975) 192-201.
- 14 K. HEYNS AND J. I. PARK, Chem. Ber., 109 (1976) 3262-3281.
- 15 A. B. FOSTER, W. G. OVEREND, AND M. STACEY, J. Chem. Soc., (1951) 974-979.
- 16 K. TAKIURA AND S. HONDA, Carbohydr. Res , 21 (1972) 379-391.